7 Days Trial Program Only for the Members of CCS Located in Taipei & ACS Taiwan Chapter

www.cas.org

SciFinder provides an innovative interface that streamlines your research process

🔷 SciFinder [®]		Pre	ferences SaFinder Help 🔻 Sign Out
Explore Saved Searce	ches SciPlanner		
REFERENCES SI	UBSTANCES: CHEMICAL STRUCTURE 🛛		
Research Topic Author Name Company Name Document Identifier Journal Patent Tags SUBSTANCES Chemical Structure Markush Molecular Formula Property Substance Identifier	Structure Editor:	Search Type: Substructure Substructure Similarity Show precision analysis	SAVED ANSWER SETS selective reduction of nitro group Lipitor_fragment_patents_from _SSS 143950-76-9 water_desalination_reviewartic MarkShannon1 macrocycles_protein Autosaved Substance Set View All Import KEEP ME POSTED
REACTIONS Reaction Structure	Import CXF Search ➤ Advanced Search	search directly from ChemBioDraw Ultra 14. Learn More	carbon nanotubes Sep 06, 2014(258) Aug 30, 2014(256) Aug 23, 2014(268)

Database growth

101 million+

uniquely identified organic and inorganic Substances The largest collection of small molecules -by tens of millionsavailable anywhere A division of the American Chemical Society

41 million+ Literature References

Plus integrated access to 24 million records in the MEDLINE[®] database from the U.S. National Library of Medicine

82 million+

Reactions

Nearly double the next largest reaction source

<mark>63</mark>

Patent Authorities

25% more than any other scientific information provider

Data as of August 2015

Chemistry: Central Science

CAplus, produced by CAS, contains more than 41 million chemistry and chemistry related research records categorized in 80 sections, with references in:

All areas of biochemistry

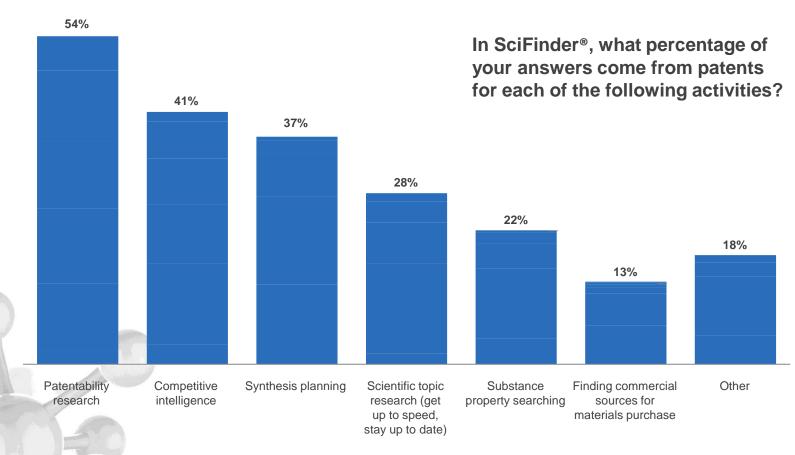
- Agrochemical regulators
- Biochemical genetics
- Fermentation
- Immunochemistry
- Pharmacology

All areas of macromolecular chemistry

- Cellulose, lignin, paper
- Coatings, inks
- Dyes, organic pigments
- Synthetic elastomers
- Textiles, fibers

All areas of organic chemistry

- Amino acids
- Biomolecules
- Carbohydrates
- Organometallic compounds
- Steroids


All areas of applied chemistry

- · Air pollution
- Ceramics
- Essential oils, cosmetics
- Fossil fuels
- · Ferrous metals, alloys

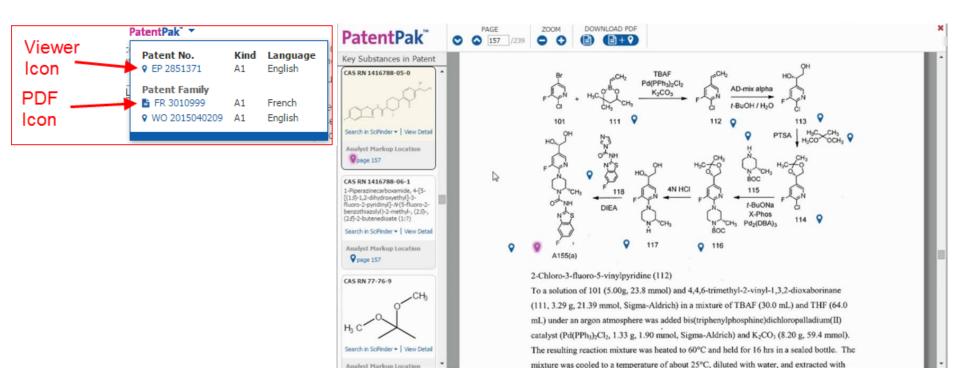
All areas of physical, inorganic, analytical chemistry

- Surface chemistry
- Catalysts
- Phase equilibrium
- Nuclear phenomena
- Electrochemistry

Patents play a vital role in most research activities

Source: September 2014 SciFinder Patent User Survey

CAS covers patents from around the world


- Content from 63 patent issuing authorities
- Nine major patent offices available online in CAplusSM
 - within two days of publication

CAS

- fully indexed by CAS scientists within 27 days from the date of issue.

PatentPak

a robust patent workflow solution that allows scientists to track down and locate the relevant chemistry in patents using SciFinder in half the time!

Wouldn't it be nice to click immediately to the patent document?

- Avoid being relegated to hard to use 3rd party web sites
- patents are fully searchable and support copy/paste

SciFinder	•	Preferences SciFinder Help - Sign Out
Explore Saved Se	earches 🔻 SciPlanner	
Patent "US20080078739" > refe REFERENCES 2	rences (3) Get Get Substances Get Relat Reactions Get Citations	 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date 14 January 2010 (14.01.2010) PCT
Analyze Refine Categorize Analyze by: Author Name Booth Jean Paul 1	Sort by: Accession Number O of 3 References Selected	(51) International Patent Classification: H01L 21/266 (2006.01) H01L 21/2065 (2006.01) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FL, GB, CD, GE, GH, GM, GT, HN, HR, HU, DD, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, JJ, TM, TN, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Fujita Minoru 1 Hattori Kazuhiro 1 Hibi Mikiharu 1 Kajii Yoshio 1	From PCT Int. App A method for The method includes app frequency (R set of charac processing cl	 (26) Funication Language: English (30) Priority Data: 61/078,739 7 July 2008 (07.07.2008) US (71) Applicant (for all designated States except US): LAM RESEARCH CORPORATION [US/US]; 4650 Cushing Parkway, Fremont, CA 94538 (US). (72) Inventors' Applicants (for US only): BOOTH, Jean-paul [FR/US]; 4650 Cushing Parkway, Fremont, CA 94538 (US). KEIL, Douglas, L. [US/US]; 4650 Cushing Park way, Fremont, CA 94538 (US). (74) Ageu: NGUYEN, Joseph, A.; P.O. Box 700640, San

CAS

The global patent coverage available in PatentPak assists the scientist in finding an equivalent patent

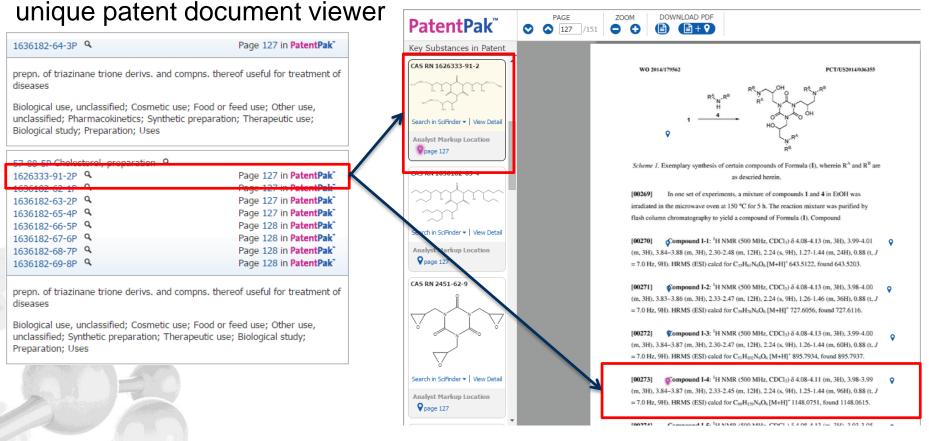
- PatentPak[™] provides direct links to related patents in their original language which could be different than the patent indexed by CAS scientists.
- Find patents in English, Chinese, Japanese, Russian, German, French, and Korean

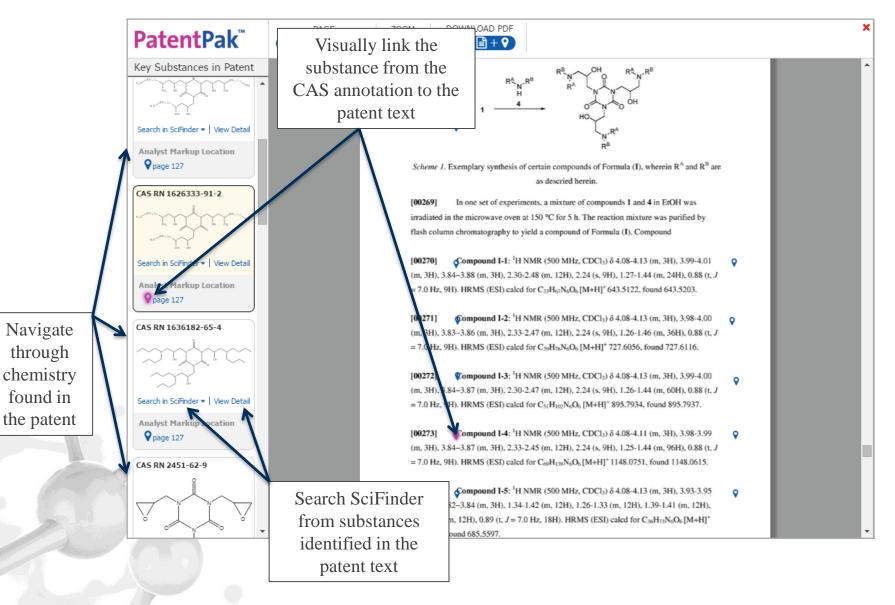
•	Patent Information	l.				2003
	Patent No.		Kind	Language	Date	Intellectual
JPO	EP 2891484	PatentPak	A1		Jul 8, 2015	Property Office
	US 20150190359	PatentPak	A1	English	Jul 9, 2015	TOTICe
	JP 2015129107	PatentPak	Α	Japanese	Jul 16, 2015	
3	CN 104758249	PatentPak	А	Chinese	Jul 8, 2015	inni
	KR 2015082078	PatentPak	А	Korean	Jul 15, 2015	INSTITUT NATIONAL
	WO 2015105458	PatentPak	A1	English	Jul 16, 2015	DE ∟A PROPRIÉTÉ INDUSTRIELLE

w

Deutsches Patent- und Markenamt

Europaisches Patentamt European Patent Office Office européen des brevets




CAS

Links to key substances in the patent allow scientists to get directly to what matters most in no time at all

PatentPak^T links to the actual location in the patent where important substances are described in the claims or experimental sections in a

A unique patent viewer provides a range of powerful new navigation and exploration tools

CAS

Preserve Your Most Valuable Resource – Time

- Instant access to searchable full-text patents from major patent offices around the world
- Patent family coverage in multiple languages
- Substance location mapping provided through the CAS REGISTRY
- Secure and confidential patent research
- Daily updates
- Interactive viewer with built-in SciFinder search functionality

MethodsNow[™] is a complete CAS solution

- Largest single collection of methods information
 - Addresses core chemistry markets
- CAS-quality indexing and new, value-add templating of key methods
 from important full-text sources
- Covers both synthetic and analytical researcher needs

So what exactly is MethodsNow?

- A collection of over a million synthetic and analytic methods with more to come!
 - Focused indexing, step-by-step instruction
 - Details for analytical researchers such as matrix, analyte, instrumentation and comparison capabilities

- Interface options right where the user needs them!
 - Synthetic researchers will find relevant content right inside SciFinder
 - Analytical researchers will find relevant content in a newly-designed interface tailored for their search needs

One product, two interfaces

 Research showed that users interested in synthetic methods were often already in SciFinder, but analytical scientists often weren't (though they might be familiar with it)

Synthetic chemist looking for great methods? They are in SciFinder.

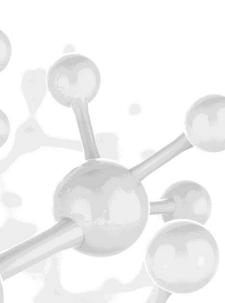
🔷 SciFin	der	Preferences Sciffinder Help + Sign Det
-		Session Info Set PlanePath Welcome Jonathan W Taylo
Explore • Si	aved Searches SciPlanner	Save Print Export
eaction Structure substru	schure > reactions (9)	
EACTIONS 🔮	E Get References 😤 Tooks *	Send to SciPlarmer
alyze Refine	Group by: No Grouping 🔻 Sort by: Relevance 💌 🏺	Display Options
nalyze by: 😡	0 of 9 Reactions Selected	
leagent	🔹 🗧 1. View Reaction Detail 00 Link 🛓 Similar Reactions	
₂ N	9 Single Step Hover over any structure for more options.	
1001	6	
N(Pr- <i>i</i>),		
- 41 - 42		0, <u>20</u>
Show More	$+ 0^{(CH_2)}_{10} \rightarrow 0$	J
		ĺ.
	CH, -I a	<u>)</u> "
	0 70%	
	 MetwoosNow¹⁰ 	
	Procedure	
(
	 Stir the mixture of 7-ethynyl-4-methor- ycarbonylmethyl-2H-chromen-2-one (400 mg, 1.65 mmol), 1- azidsundecane (358 mg, 0.17 mmol), (+)-sodum L-ascorbate (360 mg, 1.82 mmol) in t-8uOH(water (15 mL/15 mL) at room temperature for 4 	mg, 1.82 mmol), copper(II) sulfate pentahydrate / . 4 hours.
\langle	 Stor the mixture of 7-relation/4-mixture yearboxylexthyl-2H-chromese-Zenel 600 mg, L45 mmd), 1- asstandackaral (258), mg, 0.17 mmd), (-3, 2004mi, -3xcortable (360 mg, 1.42 mmd) in t-BuOH/water (15 mt,15 mt) at room temperature for 4 2. Add water to the mixture. 	mg, 1.62 mmai), copper(II) sulfate pentahydrate if. 4 hours.
\langle	mg, 0.17 mmol), (+)-sodium L-ascorbate (360 mg, 1.82 mmol) in t-BuOH/water (15 mL/15 mL) at room temperature for 4 2. Add water to the moture.	mg, 1.82 mmai), copper(II) sulfate pentahydrato /d. 4 hours.
	mg, 0.12 mmd), (+)-sodum L-ascetale (380 mg, 1.42 mmd) in E8u0H/water (15 mL/15 mL) at room temperature for 4 2. Add vater to the minture.	mg, 1.82 mmol), copper(II) sulfate pentahydrate of h hours.

Analytical scientist just looking for great methods? A new, easy to use interface just for you.

CAS Solutions -		🖈 Saved 📃 Accou	int
Search			
Enter keyword, matrix, analyte, etc.			
		Q	
Advanced Search			
Browse Method Categories			
Agricultural Applications / Analysis	Fuels / Geology / Biofuels	Pharmacology / Toxicology	
Bioassays	Historical Analysis / Dating	Polymer Analysis	
Biomolecule Isolation	Miscellaneous	Water Analysis	
Environmental Analysis	Organic Compound Analysis		
Food Analysis	Organometallics / Inorganics		
Recent Searches			
Browse: Pesticide Residue Analysis			0

MethodsNow – Analytical Scientist Interface

Search		
Enter keyword, matrix, analyte, etc.		
1		
Advanced Search		
Browse Method Categories		
Agricultural Applications / Analysis	Fuels / Geology / Biofuels	Pharmacology / Toxicology
Bioassays Biomolecule Isolation	Historical Analysis / Dating Miscellaneous	Polymer Analysis Water Analysis
Environmental Analysis	Organic Compound Analysis	index rations
Food Analysis	Organometallics / Inorganics	

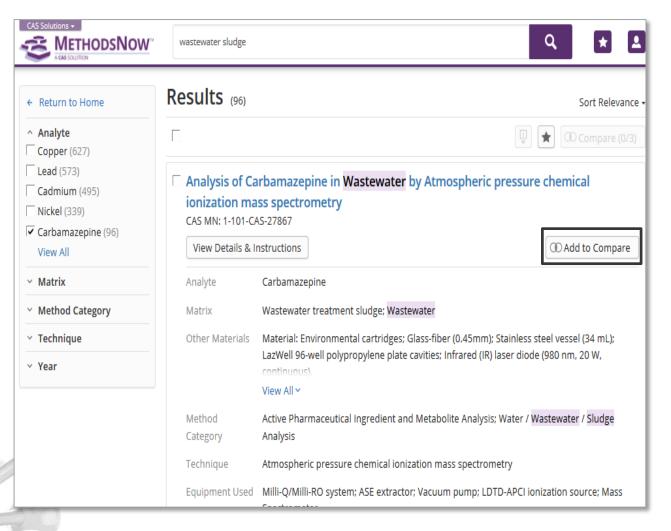

Specify one or many advanced search fields

		★ Saved	Account		
 ← Return to Home Advanced Search 					
Keyword				★ Saved	Account
AND Matrix AND Analyte Add Search Criteria	✓ Return to Home Advanced Search Publication Name ✓ Keyword Analyte Matrix Method Category Technique CAS Method Number Publication Name				
ALE					

Search for wastewater sludge

		Saved	Account
Search			
Enter keyword, matrix, analyte, etc.			
wastew			۹
wastewater wastewater treatment			
wastewater treatment anaerobic sludge wastewater treatment plants			
wastewater treatment sludge			
Agricultural Applications / Analysis	Fuels / Geology / Biofuels	Pharmacology / Toxicology	
Bioassays	Historical Analysis / Dating	Polymer Analysis	
Biomolecule Isolation	Miscellaneous	Water Analysis	
Environmental Analysis	Organic Compound Analysis		
Food Analysis	Organometallics / Inorganics		
Recent Searches			
hplc lycopene analysis			8

Filters allow you to quickly hone in on the most interesting results

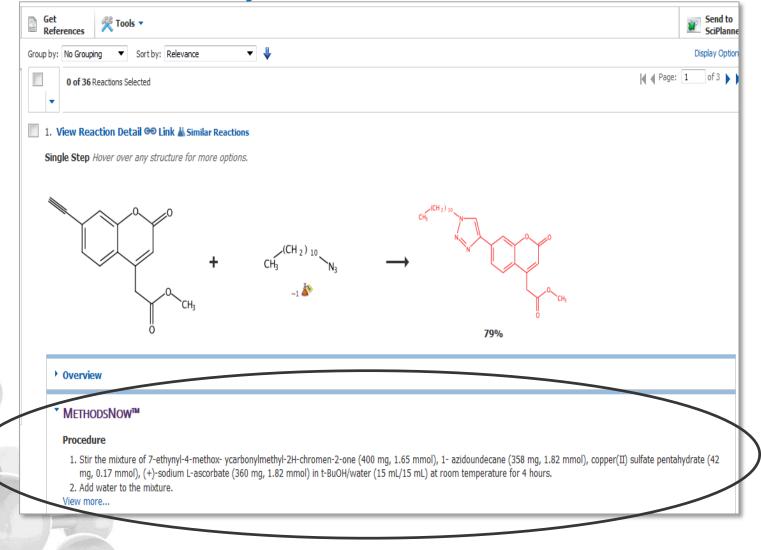


CAS Solutions • METHODSNOW [®] A CAS SOLUTION	wastewater sludge	۹ \star 💵
← Return to Home	Results (8923)	Sort Relevance v
 Analyte Copper (627) 		↓ ① Compare (0/3)
Lead (573) Cadmium (495) Nickel (339)	CAS MN: 1-143-CA	
Mercury (333) View All	Analyte	Phosphorus
 Matrix Drinking waters (3146) 	Matrix	Municipal wastewater; Wastewater treatment sludge
River waters (2417) Water (2191) Wastewater (1540)	Other Materials	Reagent: Perchloric acid; Molybdic acid; L-Ascorbic acid; Sulfuric acid Material: Oven
Seawater (1045) View All	Method Category	Water / Wastewater / Sludge Analysis
 Method Category 	Technique	Dehydration process; UV-visible spectroscopy
✓ Technique	Equipment Used	UV-VIS spectrometer
Year	Source	Method validation and uncertainty estimation for total phosphorus determination in wastewater sludge samples

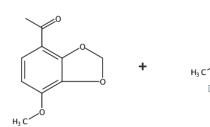
View all on analyte

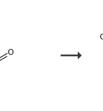
Alphabetically By Count		
Copper (627)	Indeno[1,2,3-cd]pyrene (119)	Polycyclic aromatic hydrocarbons (79)
Cadmium (495)	Ciprofloxacin (116)	Terbuthylazine (79)
Nickel (339)	Ethinylestradiol (115)	Trimethoprim (79)
Mercury (333)	Vanadium (115)	Dimethyl phthalate (78)
Zinc (275)	Dibenz[<i>a</i> , <i>h</i>]anthracene	Selenium (78)
Cobalt (254)	(112)	Dioctyl phthalate (75)
Chromium (253)	Naproxen (111)	Diethyl phthalate (74)
Iron (242)	Enrofloxacin (110)	α-Endosulfan (74)
Arsenic (209)	Chromium(6+) (107)	p,p'-DDD (74)
2,2'-Bis(4-	Uranium (107)	Carbofuran (73)
hydroxyphenyl)propane	Chlorpyrifos (105)	Sulfadiazine (73)
(199)	Lead(2+) (104)	2,4,6-Trichlorophenol (72)
Prev 1 2 3 4 5 4		

Compare results of interest



	NOW wastewater sludge	۹ * ۱
ompare Me	thods	
		Ψ
		Expand All Collapse A
	1 😣	2 😵
Title	Analysis of Carbamazepine in Wastewater by Atmospheric pressure chemical ionization mass spectrometry	Analysis of Carbamazepine in Wastewater by Atmospheric pressure chemical ionization mass spectrometry
CAS Method Number	1-101-CAS-27867	1-101-CAS-29149
Method Category	Active Pharmaceutical Ingredient and Metabolite Analysis; Water / Wastewater / Sludge Analysis	Active Pharmaceutical Ingredient and Metabolite Analysis; Water / <mark>Wastewater</mark> / <mark>Sludge</mark> Analysis
Technique	Atmospheric pressure chemical ionization mass spectrometry	Atmospheric pressure chemical ionization mass spectrometry
Analyte	Carbamazepine	Carbamazepine
Matrix	Wastewater treatment sludge; Wastewater	Wastewater treatment sludge; Wastewater
Other Materials	Environmental cartridges; Glass-fiber (0.45mm); Stainless steel vessel (34 mL); LazWell 96-well polypropylene plate cavities: Infrared (IR) laser diode (980 nm, 20 W.	Environmental cartridges; Glass-fiber (0.45mm); LazWell 96-well polypropylene plate cavities; Infrared (IR) laser diode (980 nm. 20 W. continuous).


MethodsNow for analytical scientists: Great content sources


Content from years	2000 - present
Number of methods	~150,000 at launch – more than any other single source
Content Coverage	Broad range: Key focus in Pharma, Ag, and chemical as well as others
Source Focus	Full CAplus [™] database. Future investment may include regulatory agencies and instrumentation
Example journal titles	Food Chemistry, Journal of Chromatography A and B, Journal of Agricultural and Food Chemistry, Talanta, Analytica Chimica Acta
Language	English only

MethodsNow – Synthetic Chemist Interface

SciFinder has the largest collection of experimental procedures for reactions

Overview

Steps/Stages

1.1 R:Na_3HPO_4, R:mCPBA, S:CH_2Cl_2, cooled; 1 h, rt 1.2 R:KOH, S:MeOH, 2 h, rt 1.3 R:HCl, S:H_3O, acidify 2.1 R:POCl_3, S:DMF, 15 min, 5°C; 5°C \rightarrow rt; 20 min, rt 2.2 rt; rt \rightarrow 75°C; 2 h, 75°C; 75°C \rightarrow 0°C 2.3 R:H_2O, 5°C

Notes

1) Baeyer-Villiger oxidation (stage 1), 2) regioselective, Vilsmeier reaction, Reactants: 2, Reagents: 6, Solvents: 4, Steps: 2, Stages: 6, Most stages in any one step: 3

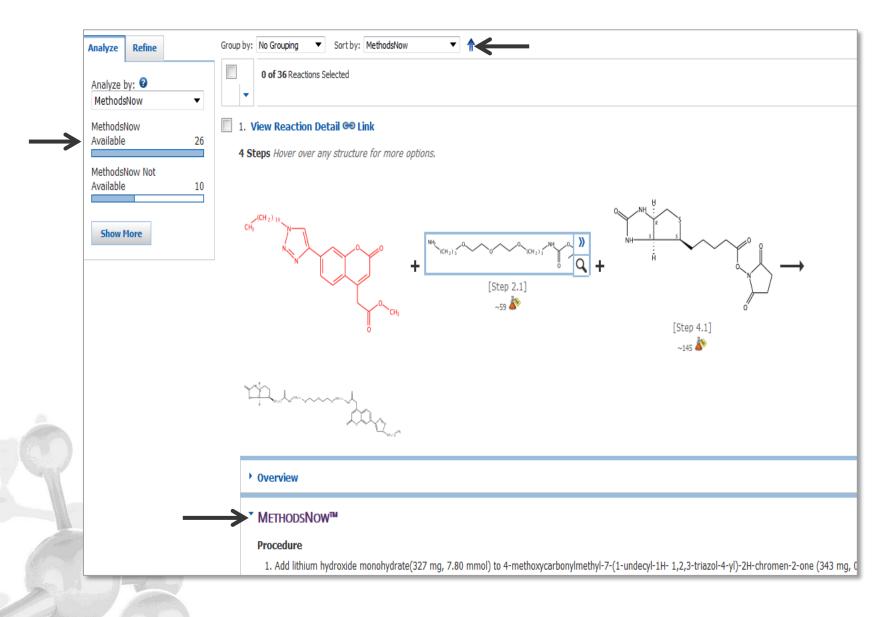
References

Total Synthesis of Bulbophylol-B Q Quick View Of Other Sources By Lin, Jinshun et al

From Journal of Natural Products, 71(11), 1938-1941; 2008

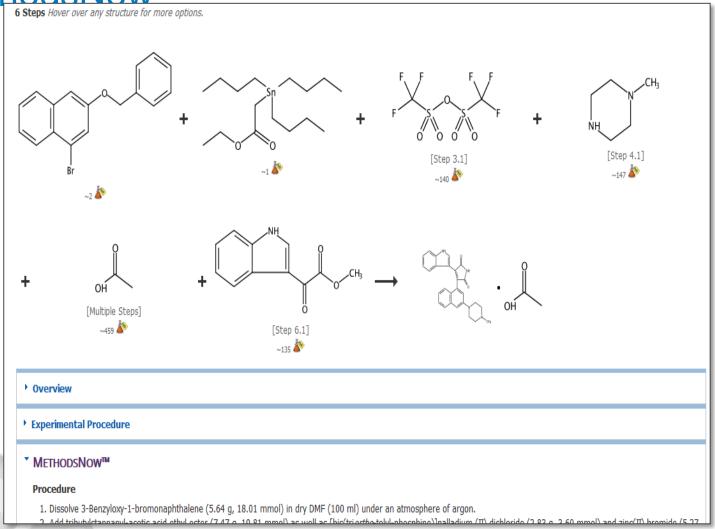
Experimental Procedure

PRODUCTS


Step 1

It is our most popular feature, but you've told us we can do more 4-Methoxy-2,3-methylenedioxyphenyl Acetate (8). To a suspension of 7 (5.0 g, 25.5 mmol) and anhydrous Na_HPO₄ (4.7 g, 33.2 mmol) in CH₂Cl₂ (50 mL) was added *m*-CPBA (85%, 23.4 g, 127.5 mmol), in portions and in an ice-water bath, and the mixture was stirred at room temperature for 1 h. The resulting mixture was refluxed overnight, then cooled and filtered. The filter cake was washed with CH₂Cl₂ (3 × 30 mL). Evaporation of the solvent *in vacuo* gave a residue, which was directly used in the next reaction. 4-Methoxy-2,3-methylenedioxyphenol (9). KOH (1.4 g, 25 mmol) in H₂O (10 mL) was added to the crude 8 (5.5 g, 25.8 mmol) in MeOH (20 mL), and the mixture was stirred for 2 h at room temperature. The mixture was concritated to 10 mL and acdified with 2 M HCl (5 mL). The aqueous layer was extracted with CHCl₃ (3 × 20 mL), washed with H₂O (2 × 20 mL) and brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by column chromatography (CC) (*r*-hexane/EtOAc, 3:1) to give 9 (4.38 g; two steps total yield 78%) as a white solid: 4-Methoxy-2,3-methylenedioxyphenol (9), yield 4.38 g, 78% mp 103-105 °C (lit.¹² mp 100-101 °C); ¹H NMR (300 MHz, CDCl₃) *δ* 6.43 (1H, s, H-6), 6.42 (1H, s, H-5), 5.99 (2H, s, OCH₂O), 4.48 (1H, s, OH), 3.85 (1H, s, OH₂).

Step 2


2-Hydroxy-3,4-methylenedioxy-5-methoxybenzaldehyde (10). POCl₃ (5.5 mL, 59.5 mmol) was added dropwise to DMF (10 mL, 129.4 mmol) over 15 min at 5 °C, then stirred at room temperature for 20 min followed by addition of 9 (2.5 g, 14.9 mmol) in portions. The mixture was slowly heated to 75 °C and then stirred at this temperature for 2 h. The resulting mixture was cooled to 5 °C and poured into H₂O (50 mL). After filtration, the filter cake was purified by CC (*n*-hexane/CHCl₃, 1:1) to give 10 (2.3 g, 79%) as a white solid: 2-Hydroxy-3,4-methylenedioxy-5-methoxybenzaldehyde (10), yield 2.3 g, 79% mp 181-182 °C (lit.¹² mp 179-180 °C); ¹H NMR (300 MHz, CDCl₃) *δ* 10.83 (1H, *CHO*), 9.73 (1H, s, O/H), 6.18 (2H, s, OC/H₀). 3.93 (3H, s, OC/H₀).

CAS

MethodsNow					
7-Triazolylcoumarin-b	ased fluorescent tag system for stepwise, comparative assessment	of small molecule microar	rays		
By Jeon, Moon-Kook; Kang, Myoung-Ku; Park, Koon Ha From Tetrahedron, 68(30), 6038-6053; 2012 Published by Elsevier Ltd.		MethodsNow			
Reaction Steps 1 2 3 4 CH ₃ (CH ₂) 10 (CH ₂) 10 (CH ₃) 10 N 0 0 1		Procedure	 Add lithium hydroxide monohydrate(327 mg, 7.80 mmol) to 4-methoxycarbonylmethyl- 7-(1-undecyl-1H- 1,2,3-triazol-4-yl)-2H-chromen-2-one (343 mg, 0.780 mmol) in THF/water(25 mL/25 mL/25 mL) at room temperature. Stir the reaction mixture for 3 hours at room temperature. Adjust pH 3-4 to the reaction mixture by adding 1 N hydrochloric acid. Partition the reaction mixture between ethyl acetate and water. Extract the aqueous layer with ethyl acetate. Dry the combined organic layer over magnesium sulfate. 		
$ \begin{array}{c} & & \\ & & $		Scale	milligram		
		¹ H NMR	¹ H NMR (300 MHz, acetone- d_{s}): δ = 7.83 (s, 1H), 8.58 (s, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 6.47 (s, 1H), 4.50 (t, J = 7.2 Hz, 2H), 3.99 (s, 2H), 2.00 (quintet, J = 7.2 Hz, 2H), 1.32-1.43 (m, 4H), 1.22-1.32 (m, 12H), 0.87 ppm (t, J = 6.8 Hz, 3H).		
Products	2H-1-Benzopyran-4-acetic acid, 2-oxo-7-(1-undecyl-1H-1,2,3-tria 1384966-77-1	¹³ C NMR	¹³ C NMR (125 MHz, DMF-d ₂ , 60 °C): δ = 161.0, 155.1, 154.2, 146.5, 136.0, 127.2, 123.7, 122.1, 120.4, 115.3, 113.5, 51.1, 32.8, 29.9, 27.3, 23.5, 18.7, 14.7 ppm (decarboxylation occurred to give the corresponding 4-methyl derivative).		
Reactants	2H-1-Benzopyran-4-acetic acid, 2-oxo-7-(1-undecyl-1H-1,2,3-tria 1384966-75-9	IR	IR (ATR, neat): v = 3423, 2922, 2851, 1702 (2CâO, overlapped), 1619, 1561, 1375, 1154, 936, 852, 809 cm ⁻¹ .		
Reagents	Hydrochloric acid, CAS RN: 7647-01-0 Lithium hydroxide, CAS RN: 1310-65-2	HRMS	HRMS (EI): m/z calculated for $C_{24}H_{31}N_3O_4$: 425.2315 [M ⁺]; found: 425.2315.		
Solvents	Water, CAS RN: 7732-18-5 Tetrahydrofuran, CAS RN: 109-99-9	Mass Spec	MS (ESI): m/z: 426 [M+H ⁺].		
		МР	235.5±0.8 °C.		
		CAS Method Number	3-352-CAS-78415		
			Print/Export Close		

A reaction with experimental procedure and MethodsNow

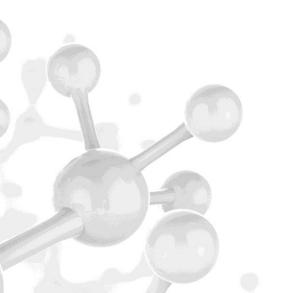
MethodsNow synthetic chemistry content sources

Content from years	2000 - present
Number of protocols	>1 million at launch; 2 million within months; 3 million later this year
Content Coverage	Small molecule synthesis
Source Focus	180+ journals titles including new coverage from Wiley, RSC and Elsevier in addition to ACS, Springer, Taylor&Francis, WO patents (2010- present)
Example journal titles	Organic Letters, Catalysis Letters, Journal of Coordination Chemistry, Journal of Medicinal Chemistry, Journal of the American Chemical Society, Angewandte Chemie, Tetrahedron, Chemical Science
Language	English only

MethodsNow Benefits

- Readily integrates into your workflow
- Lets you quickly compare analytical methods side by side
- Saves time with easy searching and direct access to method details no more searching through full-text documents
- Displays experimental details in easy-to-read table format
- Includes materials, instrumentation, validation data, conditions and more

A Solution Powered by CAS


www.cas.org

Unique NCI Global benefits

- One-stop shopping for extensive coverage of inventories and regulatory lists
 - 15 major national inventories
 - Nearly 150 regulatory lists and pre-manufacturing notifications (PMNs)
 - More than 343,000 substances
- Relevant for a broad range of business applications
 - Determine the countries in which you can sell your company's products
 - Discover similar products that are already listed on an inventory
 - Find transportation requirements for shipping your company's products
 - Discover whether changes in one of your company's product formulations are still compliant
- Built by the inventory experts at CAS

Updated!

Chemisches Zentralblatt – ChemZent – content now in SciFinder

- Covers chemical literature from 1830 to 1969
 - The first and oldest abstracts journal in chemistry
 - The only comprehensive abstract journal available until 1907
- Only available in German until now
 - German is translated to and searchable in English
 - Substances and concepts indexed from the German abstracts
 - Structures and keywords are searchable
 - German abstracts can be displayed and printed
- Now integrated into SciFinder
 - Completes and extends the comprehensive content in SciFinder
 - Provides easy access to a valuable chemistry collection in a CAS solution that is familiar to you and your users

Priced analogous to other historical archives

The Conditions of The Continuous 7-Day SciFinder/ PatentPak/ MethodsNow Trial Are

- 1. Members of Chinese Chemical Society Located in Taipei or ACS Taiwan Chapter are eligible to apply.
- 2. Only one time trial for a member.
- 3. The trial quota is limited and the applicant needs to be evaluated by CAS. In addition, these conditions can be changed once it not right for our purpose.

Please fill out the form and send to <u>Taiwan@acsi.info</u>. If qualified, we will send you a ID&Password in 3 days. Please notice: The trial is continuously 7 days including weekend.

Remote Access ID Application Form		
Trial Product:	SciFinder/ PatentPak/ MethodsNow	
Organization Name:		
Address:		
Which Member:		
Contact (Full name):		
Title:		
Phone:		
Email:		
Official Website:		
SciFinder Experience: (Y/N)		
The purpose of the trial		

Contact Details

Mavis Meng 孟 潔 Taiwan ACSI - CAS, a division of the American Chemical Society Email: MMeng@acsi.info Phone: +886 905 807 582 <u>www.cas.org</u>

CAS products streamline access to CAS databases to speed the pace of scientific discovery

SciFinder is an intuitive discovery platform with flexible search and analysis options designed for scientists' workflows.

PatentPak[™] now available

STN combines industry-leading search and retrieval with unique and comprehensive content.

Trust NCI Global for the regulatory information you need whether you manufacture, import, export or transport chemicals.